Rough Set Methods and Submodular Functions
نویسندگان
چکیده
In this article we discuss the connection of Rough Set methods and submodular functions. We show that discernibility measure used in reduct calculation is submodular and provides a bridge between certain methods from Rough Set theory and Submodular Function theory.
منابع مشابه
Some Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کاملOn the Reducibility of Submodular Functions
The scalability of submodular optimization methods is critical for their usability in practice. In this paper, we study the reducibility of submodular functions, a property that enables us to reduce the solution space of submodular optimization problems without performance loss. We introduce the concept of reducibility using marginal gains. Then we show that by adding perturbation, we can endow...
متن کاملMultigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making
In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...
متن کاملSmooth Interactive Submodular Set Cover
Interactive submodular set cover is an interactive variant of submodular set cover over a hypothesis class of submodular functions, where the goal is to satisfy all sufficiently plausible submodular functions to a target threshold using as few (cost-weighted) actions as possible. It models settings where there is uncertainty regarding which submodular function to optimize. In this paper, we pro...
متن کاملFast Mixing for Discrete Point Processes
We investigate the systematic mechanism for designing fast mixing Markov chain Monte Carlo algorithms to sample from discrete point processes under the Dobrushin uniqueness condition for Gibbs measures. Discrete point processes are defined as probability distributions μ(S) ∝ exp(βf(S)) over all subsets S ∈ 2 of a finite set V through a bounded set function f : 2 → R and a parameter β > 0. A sub...
متن کامل